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A theoretical analysis is made of the indentation hardness of glass matrix, particulate 
composites. It is hypothesized that glass is an elastic-plastic solid on a microscopic scale. 
Based upon the Marsh theory of indentation, expressions are formulated for indentation 
hardness of two-phase composites containing spherical particles. When hard particles are 
dispersed in a soft glass matrix, the overall hardness depends upon the matrix hardness, 
the volume-fraction of dispersed phase, the elastic properties of the two phases and also 
the matrix flow stress. On the other hand, when soft particles are dispersed in a hard glass 
matrix, the hardness and the elastic moduli vary in parallel with the volume-fraction of 
dispersed phase. Furthermore, the present analysis indicates that the hardness of a com- 
posite is independent of the particle size and interparticle spacing if the volume-fraction 
of the particles is kept constant. Experimental results of the Vickers hardness of phase- 
separated glasses as well as published hardness data for a glass-ceramic are used for the 
verification of the theory. The proposed theory explains well the hardness behaviour of 
such glass matrix composites in terms of the properties and amounts of the individual 
phases and the microstructural effects. 

1. Introduction 
Many investigations have been undertaken to 
correlate the indentation hardness of glass with its 
other physical properties and to interpret indent- 
ation behaviour in terms of glass structure. 
Although the mechanism of deformation during 
indentation is not clearly understood, hardness 
testing provides useful information concerning the 
mechanical behaviour of glass. 

It is well-known that the mechanical properties, 
including hardness, are sensitive to inhomogeneities 
in the microstructure of materials. As for inhom- 
ogeneous glasses or glass-ceramics, however, little 
detailed work has been done concerning the 
relationship of indentation hardness to their micro- 
structure. Donald and McCurrie [l ] measured the 
indentation hardness of an MgO-Li20-Alz03 
-SiO2 glass-ceramic as a function of heat- 
treatment time, determining the microstructure by 
replication electron microscopy. They showed that 
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the hardness correlates to some extent with the 
changes in microstructure. Stryjak and McMillan 
[2, 3] studied the variation of hardness with heat- 
treatment of  a spinel transparent glass-ceramic 
based on the ZnO-Al203-SiO2 system. They 
found that the hardness increased linearly with the 
volume-fraction and particle size of the crystallites 
developed. Rice [4] discussed their experimental 
results and interpreted them, taking into account a 
possible internal stress dependence of the hardness 
of crystallized glasses. Turetzky, Jenkins and 
Fraser [5] studied the Vickers hardness of sintered 
films of borosilicate glass on alumina substrates. 
They observed a wide dispersion of hardness of the 
heat4reated samples, and qualitatively attributed 
this phenomenon to the extent of phase-separation 
in the samples, although no interpretation in 
relation to the phase-separated morphology was 
given. 

The present paper is concerned with the effect 
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of second-phase dispersion on the indentation 
behaviour of glass matrix, particulate composites. 
A theory is proposed for a model two-phase 
particulate system where the particle size is much 
smaller than the scale of deformation produced by 
indentation. Expressions are formulated for the 
indentation hardness of such solids, based upon a 
micromechanical viewpoint of flow in glass. For 
the verification of the theory, the Vickers indent- 
ation hardness measurements are carried out on 
phase-separated lead borate and sodium borosili- 
cate glasses. The theoretical results are also com- 
pared with published hardness data for a glass- 
ceramic having particulate microstructure. 

2. A brief review of the theories of 
indentation hardness of glass 

2.1. Mechanism of deformation in glass 
The mechanism of deformation during indent- 
ation, which results in a permanent impression 
in glass, has long been a subject of controversy. 
Some mechanisms have been suggested by several 
authors: They are (a)viscous flow [6], (b)plastic 
flow [7-9] and (c)densiflcation resulting from 
compression and shear [10, 11]. The experimental 
results of the Vickers hardness of soft glasses may 
best be interpreted by introducing the concept of 
"plastic flow" which is somewhat analogous to 
that which occurs in metals. However, in the case 
of hard glasses such as pure silica, there is some 
evidence for the occurrence of densification 
phenomena. At the present stage of development 
of the deformation theory of glass, it is difficult to 
specify in a quantitative manner which of these 
two basic processes dominates in a given glass. 
Peter [12] discussed some phenomena which may 
be observed during indentation in silicate glasses 
and suggested that the flow in glass at room tem- 
perature appears to require a minimum percent- 
age of network modifiers. It seems reasonable to 
assume that indentation involves both shear- 
induced flow (either plastic or viscous) and 
pressure-induced densification, the proportions of 
which depend upon the nature of glass, although 
atomistic displacement mechanisms are still 

�9 unknown. 

2.2. The  Marsh t h e o r y  
The Vickers hardness test method is one of the 
most common and reliable methods for indent- 
ation hardness measurements. The Vickers hard- 
ness is def'med as the load divided by the pyra- 
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midal area of indentation, i.e., the mean pressure 
under the indenter. It is well known that, for 
softer materials, the Vickers hardness, H, can be 
closely related to the yield stress, Oy, as considered 
by Tabor [13] 11/% ~--3. However, this simple 
indentation theory does not hold for highly elastic 
materials which show large elastic strains before 
the onset of plastic flow. 

For highly elastic materials, an adequate simple 
model for the elastic-plastic indentation problem 
is that of the expansion of a spherical cavity in an 
elastic-plastic medium by internal pressure. Hill 
[14] derived an expression for this pressure, p, 
required to expand a spherical cavity in an infinite 
medium 

% 3 (1 ----v)a ' (1) 

where ay is the yield stress in compression, E is 
the Young's modulus and v is the Poisson's ratio. 
Marsh [91 proposed a hardness theory based upon 
the Hill equation and derived a similar expression 
for the indentation 

3 ) 
- -  = A + B In ( 2 )  
oy , ~ + 3~ -- ~8 ' 

where ~ = 6(1 - -  2y)Oy/E, ~ = ( 1  + V)oy/E, and A 
and B are constants. Generally cry/E~ 1, hence 

~ 1 and ~ ~ 1. Although Marsh used a more 
precise Hill equation, eliminating certain simplify- 
ing assumptions, Equation 2 may be approximated 
with acceptable accuracy by the form 

--H A+Bln(3 E ) =  
Oy (1 ~-t))ay (3) 

Marsh carried out some experiments on a wide 
range of materials with varying ey/E, and found 
empirically that A = 0.28 and B = 0.60 for a 
hemi-spherical cavity. Assuming that Equation 2 is 
applicable to glasses, he calculated values of flow 
stresses for various glasses by indentation hardness 
measurements. 

3. Indentation hardness of glass matrix, 
particulate composites 

As discussed briefly in Section 2.1, recent studies 
indicate that the indentation of glass involves both 
plastic flow and densification mechanisms. Prefer- 
ably, the analysis of the hardness of glass matrix 
composites should be undertaken, based upon a 
pertinent model which takes into account the con- 
tributions of these two possible deformation mech- 



anisms. However, such a model is difficult to 
establish at the present stage of studies on the 
deformation of glass. In the absence of detailed 
knowledge of densification phenomena during the 
indentation of glass, the authors make the hypothe- 
sis that glass is an elastic-plastic solid on a micro- 
scopic scale. For many glasses where the contri- 
bution of densification process to the overall 
deformation process is presumed to be small, this 
hypothesis may be quite reasonable: it can explain, 
at least at a phenomenological level, a great variety 
of observations of deformation phenomena in 
glasses. Furthermore, high fracture surface energy 
values observed for many glasses [15] suggest that 
glass may exhibit a limited plastic deformation 
under the very high stresses. 

In the following sections, we will analyse 
(regarding glasses as elastic-plastic materials) the 
indentation hardness of glass matrix, particulate 
composites. As shown in the preceding section, 
the indentation hardness of elastic-plastic ma- 
terials is related to their yield stresses. The prob- 
lem of analysing the hardness of a composite, 
therefore, resolves into that of finding its yield 
stress. For this purpose, micromechanics of com- 
posites will be applied to the considered composite 
system. 

3.1. Analyt ical  model  
The model used for the present considerations is a 
two-phase composite consisting of spherical 
crystalline or glass particles embedded in a glass 
matrix. It is assumed that the mechanical proper- 
ties of each phase are homogeneous and perfectly 
isotropic. It is further assumed that the dispersed 
particle size is much smaller than the scale of 
deformation produced by indentation. 

After recalling the effective elastic moduli of a 
body containing dispersed spherical inclusions, the 
hardness of particulate composites will be con- 
sidered successively for two cases, where (a)the 
elastic limit of the particles is higher than that of 
the matrix and conversely (b)the elastic limit of 
the particles is lower than that of the matrix. 

3.2. Effective elastic moduli of a composite 
containing spherical particles 

Elastic properties are one of the important factors 
which determine the deformation behaviour of 
composite materials. Here the knowledge of the 
effective elastic moduli of a composite containing 
second-phase particles is recalled. 

For a dispersion of spherical particles in a 
continuous matrix, Kerner [16] and Hashin [17] 
have given the expressions for the bulk modulus, 
K, and the shear modulus,/1, of the composite as 
follows 

1 + 3(1-q~) ] -~ 

- K~ 3K-s ~-4-~J ' (4)  

[ 
K = K m + ~b L ]Kp 

and 

[)~ 1 6(K m + 2pro)(1 --~b)] -a 
/2 = /dan + ~ P - /2m I- 5/am(3Km + 4gin) j ' 

(5) 

where the subscripts m and p refer to the matrix 
and particle, respectively, and $ is the volume- 
fraction of dispersed particles. The Young's 
modulus of the composite can be calculated 
according to the following equation 

9Ku 
E - (6) 

3 K + / /  

For a dilute dispersion of spherical particles,/1 can 
be expressed as [17, 18] 

with 

and 

Pala 
/~ = - (7) 

1 _ ( ~ _ ~ )  Qq~ 1-- aq5 ' 

Q = 15(1 - Vm)/a p (8) 

(7 -- 5Vrn)/a m + (8 -- lOPm)/ap ' 

15(1 -- Pro) 
- (Q - 1), (9)  

7 - 5v m 

where v m is the Poisson's ratio of the matrix. Since 
0.15 ~< v ~< 0.35 for most materials, then 1 ~<Q ~< 
2andO~<a~< 2 f o r / ~ p / > / ~ = a n d O ~ < Q < l a n d  
-- 2 ~< a <  0 for/2p <~,~. 

The bulk modulus, K, and the Young's modulus, 
E, can be also expressed, for a dilute concentration 
of spherical particles, in the same form as Equation 
7 

Km Km 

K =  1-- ( K P K ; m )  Q'~b - 1--a'~b (10) 

and 

e =  em _ Em .(11) 
1 - -  [ E p  - -E , ,a~  ,, 1 - -  a"c) 

e i O ~  \ 
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Note that Q corresponds to the shear stress con- 
centration factor in the inclusion [18]. Similarly, 
Q' and Q" are the bulk and normal stress concen- 
tration factors in the inclusion. It should be also 
noted that, if the Poisson's ratios of the matrix 
and inclusion are nearly e,qual and take values near 
0.25,/2/~ra "~'K/Km ~E/Em according to Equations 
4 t o 6 .  

3.3. Dispersion of second-phase particles 
having high elastic limit 

If  the dispersed phase has higher yield stress, the 
plastic flow may be restricted in a glass matrix and 
the yield stress of the matrix may be more or less 
modified by the presence of hard particles. It has 
been shown that the presence of non-deforming 
particles in a ductile material which can exhibit a 
large plastic deformation not only affects the over- 
all yield stress but also exerts a large work-harden- 
ing effect [19]. However, this is not the case for 
glass matrix composites where only a limited 
plastic deformation is assumed to occur in the 
matrix. It can be then considered that the disper- 
sion of hard particles in the glass matrix contri- 
butes to modifying the yield stress but causes little 
or no work-hardening effect. For the present case, 
-the analysis will be performed for small volume- 
fractions of  dispersed particles at which the inter- 
action between particles can be neglected. 

When a glass matrix composite containing hard 
particles is subjected to a uniform externally 
applied shear stress, r, the macroscopic shear 
strain, 3', is represented, before the onset of  plastic 
flow in the matrix, as 

3' = "r//l. (12) 

According to Eshelby [18], the state of stress in a 
tri-axial ellipsoidal inclusion in a matrix is uniform 
when the state of  stress or strain at infinity is uni- 
form. For a dilute concentration of dispersed 
spherical particles, the shear stress, rp, and shear 
strain, 3,p, of  the particle is given by [18] 

"rp = 07" (13) 
and 

3"p = ar/ t~,  (14) 

where Q is the shear stress concentration factor 
arising as a consequence of the stress interaction 
between particle and matrix and is given by 
Equation 8. It is assumed that, as long as the 
stresses in the matrix do not exceed the elastic 
limit of  the matrix~ the macroscopic strain, 3', can 

5 5 0  

be expressed as follows 

3, = (1- -~)~m +~3'p.  0 5 )  

Here, 7m is the average shear strain in the matrix. 
Taking 5~n = ~m//am where rm is the average shear 
stress in the matrix and using Equation 12 to 14, 
we obtain from Equation 15 

r ( 1 - -  Q t ~ ) \ / . t  /.tp = (1 - ~b) fm "/.tin (16) 

On the other hand, for a dilute dispersion of 
spherical second-phase particles, the effective 
shear modulus, /a, is given by Equation 7. Then 
Equation 16 can be written as 

1 - - r  
~" - - -  ~m.  ( 1 7 )  

1 - Q ~  

For the present case, we assume that the composite 
body is regarded as being in a state of yielding 
when the average shear stress in the matrix reaches 
the yield stress of the matrix. That is, the com- 
posite may attain the yielding state when 

"Tin = Tyro  i.e., ~trt 1 = 3 ' y m ,  ( 1 8 )  

w h e r e  "/'ym and 3'ym are respectively the yield 
stress and the yield strain in shear of the matrix 
without a dispersion. Then the composite yield 
stress in shear, 7"y, can be expressed from Equation 
17, as 

1 - - ~  
Ty - -  l"y m .  (19) 

I - -  Q ~  

Both the yon Mises criterion of yielding and that 
of  Tresca indicate that the yield stress in pure 
shear is related to the yield stress in uniaxial tension 
by a proportionality constant [20]. In addition, it 
can be assumed that the yield stresses in tension 
and compression are the same. Hence, expressing 
in terms of the yield stresses in tension or com- 
pression, we obtain 

1 - - ~  
Oy - 1 -- Q~b Oyrn , (20) 

where oy and O'y m are the tensile or compressive 
yield stresses of the composite and the matrix, 
respectively. 

Now the identation hardness of  the present 
type of particulate composites can be calculated 
by substituting Equation 20 into Equation 3, It 
is assumed that the Poisson's ratio of each phase 
takes equally the same values of about 0.2 to 0.3, 



and hence E]Ern ~--/a/ttm. Substitution of 
Equations 20 and 7 into Equation 3 leads to 

H =  1 - -4  

X ( H m + O y m . B l n (  1 I_.=Q___~_ t , 
ar (1 4)/(21) 

where Hm is the hardness of the matrix. Putting 

K = B O y m / H  m (22) 

and rearranging Equation 21, we finally obtain 

Hm 

1 - Q ~  
• 1 + K ( 1  - 0 - ( 2 3 )  

The quantity, Q, takes values of about 0 to 2, and 
hence - - 2 E a ~ 2 .  In the case of very small 
concentrations of dispersed particles, the logar- 
ithmic term in Equation 23 can be approximated 
as 

1 -O~b 
in (1 -- ar (1 -- 4) 

"~ In [ 1 + ( a - Q +  1)~b I (24) 

( 8 - 1 0 v =  ) 
= In ] +  7--5P m (Q-1)q~  . ( 2 5 )  

Since -- 1 ~< (Q - 1) ~< 1, the logarithmic term can 
be further approximated as follows 

in (1+ 8-10um:7-~5--~m(Q- 1)~b) 

8 -- 10P m 
_ - -  (Q - 1) ~b. ( 2 6 )  

7 - -  5v m 

Then, for such a small r the indentation hardness 
can be expressed as 

H + 

Hm 1 

( 8 -  10urn ~) 
x I + K  ~ - - ~  ( Q - l )  (27) 

"" [ I + ( Q - 1 ) ~ b ]  [1 +t~(Q-1)q~] (28) 

1 + ( Q - l ) ( 1  +K)r  (29) 

3.4. Dispersion of second-phase particles 
having low elastic limit 

For the case where a matrix with high elastic limit 
contains second-phase particles with low elastic 
limit, it can be assumed that the dispersed particles 
do not act as obstacles to the deformation after 
the onset of the plastic flow in the matrix; that is, 
the deformation of the particles will be entirely 
accommodated to the flow in the matrix. 

Let us suppose a composite of the present type 
to be subjected to a uniform applied shear stress, 
r. Up to the elastic limit, ~- is related to the macro- 
scopic shear strain, 7, and the composite shear 
modulus,/1, 

r = 7U. (30) 

It can be considered that the yielding of the 
composite under consideration occurs when the 
macroscopic shear strain, 7, reached a yield strain 
of the matrix. That is, the composite may attain 
the yielding state when 

'~ = ~[yrtl = Tyro/~drn, (31) 

where "/ym is the strain at which the yielding of 
the matrix without a dispersed phase occurs. Then 
the overall yield stress can be expressed as 

Ty = ')'yrnP 

= (U/Urn) rym. (32) 

Using Equation 5 and expressing in terms of the 
yield stresses in tension or compression, we obtain 
ey # 

Oym ~/m 

= 1 +~bJ ~ "  _} 6(Kin + 2/1m) (1 --~b)~ -1 
r 

(33) 
The indentation hardness of the present com- 

posite can now be calculated using Equation 3. If 
it is assumed that the Poisson's ratios of the two 
phases are equal and take the values near 0.25, 
the following relations are obtained 

E/Em ~ #/#m = O'y/Oym. (34) 

Substituting Equation 33 into Equation 3 and 
taking into account the above relationships, we 
finally obtain 
H 

Hm 

1 + r  _#m 
[/lp --/a m 

6(K m -}- 2P.m) (1 --(~)] -1 
- -  + 5(3Kin +4#m) ] (35) 
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Thus, in the present type of composites, th e  

indentation hardness and elastic modull vary in 
parallel with volume-fraction of dispersed particles. 

For a dilute concentration of dispersed phase, 
the expression for hardness becomes simpler. 

H 1 
, ( 3 6 )  

/arm 1 - - a r  

where a is given by Equation 9. 

3.5. Discussion of theoretical analyses 
3.5. 1. Hard spherical particles in a soft 

glass matrix 
The overall indentation hardness of the present 
type of composites can be predicted from Equation 
23 for a small concentration of dispersed phase. 
Equation 23 suggests that the hardness increases 
with increasing second-phase particles when Q > 1 
(i.e., #p >/am). Indentation testing has shown 
that, for most homogeneous glasses, typical yield 
stresses are about 0.03E to 0.05E (where E is 
Young's modulus), although they vary from glass 
to glass [7-9].  In addition, it has been shown that 
high modulus glasses exhibit generally high inden- 
tation hardness [21], which can be related to high 
yield stresses according to the Marsh theory. A 
similar argument may be expected to hold for 
many non-metallic brittle materials [22]. These 
observations suggest that most composites con- 
sidered here correspond to the case where pp > 
Pm and hence the hardness is generally increased 
by the presence of second-phase hard particles. 

Equation 23 contains a constant, K, which 
depends upon the flow stress and hardness of a 
glass matrix (Equation 22). From Equation 3, 
K can be expressed in terms of Era and Oy m 

K = B o y m / E =  (22) 

- - -  ( 3 7 )  = + In 3 (1 -- Vrn) eym 

It has been shown that H/oy values are typically 
about 1.5 to 1.7 for most commercial silicate 
glasses [9, 23]. For organic glasses, values around 
1.9 for H/oy have been reported [23]. Taking the 
value for B as 0.60 (determined by Marsh [9]), 

can be then estimated at 0.3 to 0.4 for most 
glasses. Thus, K does not change appreciably 
for a variety of glass matrices. Furthermore, 
it is important to note that the hardness of a 
composite has no basic dependence on the particle 
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size and particle spacing. However, the hardness 
can be indirectly correlated with such microstruc- 
tural parameters through a stereological expression 
relating the volume-fraction of dispersed particles 
to particle size and particle spacing. For randomly 
distributed particles, the mean free distance 
between particles, X, is given by [24]. 

X --- /7,3(1 -- r162 (38) 

where/,3 is the mean intercept length of randomly 
distributed particles. For a dispersion of spherical 
particles of diameter, D, s is given by 2D/3 [24]. 
Then, from Equation 38, r can be expressed, for 
randomly dispersed spheres, as 

D/X 
r = (39) 

3/2 + z)/x 

Substitution of Equation 39 into Equation 23 or 
Equation 29 enables the hardness to be expressed 
in terms of D/X. Thus, at constant 4~ (i.e., D/X is 
constant) the hardness remains constant, even if 
D and X vary with one another. 

3.5.2. Soft spherical particles in a hard glass 
matrix 

For the present case, the way in which the hardness 
varies with the volume-fraction of second-phase is 
determined exclusively by the elastic properties 
of the two phases. Equation 35 predicts that the 
hardness will decrease with increasing second- 
phase particles when pp <Pro- Contrary to the 
type of composites discussed in Section 3.5.1, 
elastic moduli of the matrix must be, for most 
composites of the present type, higher than those 
of the dispersed particles. It is therefore expected 
that the hardness is generally decreased by the 
presence of second-phase soft particles. Also in 
this case, the particle size and interparticle spacing 
do not influence the hardness of the composite if 
the volume-fraction of the particles is kept con- 
stant. 

4. Experimental verifications 
4.1. Hardness of PbO-B203 immiscible 

glasses 
The Vickers indentation hardness measurements 
were carried out on lead-borate glasses whose 
compositions lie in the immiscible region of the 
PbO-B:O3 system. Sample preparation technique 
as well as results ofmicrostructure characterization 
of the samples studied were already described 
elsewhere [25, 26]. Specimens about 3 mm thick 



TAB LE I Hardness data for PbO-B203 immiscible glasses 

PbO (wt%) Volume-fraction of PbO-rich phase Vickers hardness* 

H (kgf mm -~) H (GPa) 

0 
5 0.05 

10 0.13 
13 0.18 
17 0.25 
24 
28 
32 0.59 
36 0.71 
40 0.84 
41 0.88 
45 

123 -+ 4 1.21 +- 0.04 
131 -+ 4 1.28 +- 0.04 
146 -+ 4.5 1.43 +- 0.04 
148 -+ 5 1.45 -+ 0.05 
158 -+ 8 1.55 -+ 0.08 
165 -+ 4 1.62 -+ 0.04 
161 +- 5 1.58 -+ 0.05 
240 +- 9 2.35 -+ 0.09 
281 +- 8.5 2.76 +- 0.08 
288 -+ 9 2.82 -+ 0.09 
321 -+ 9 3.15 -+ 0.09 
370-+ 10 3.63 -+ 0.10 

*Load, P = 100g. 

were used for indentat ion testing. They were 
finely polished on one surface in kerosene using 
alumina abrasives to a 0.3/.tm finish. Indentat ion 
tests were performed on the annealed specimens 
using a Vickers diamond pyramid with a micro- 
hardness tester at room temperature under a dry 
N2 environment.  At least 20 indentations were 
made for each specimen with a time of  5 sec at 
full load o f  a 100 g weight. The Vickers hardness 
was calculated from 

H = 2Psin ( O / 2 ) / d  2 , (40) 

where d is the average length of  diagonals of  the 
indentation,  P is the applied load and 0 is the 
angle between opposite faces of  the indenter. 
For  the Vickers pyramid,  0 is 136 ~ . Table I 
gives the results o f  hardness measurements for 
various glass compositions.  The values for the 
volume-fraction of  the PbO-rich phase in Table I 
were determined by  linear analysis of  electron 
micrographs as well as density measurements 

[25,261. 
The immiscible phase boundary for this 

system has been welt characterized. It lies between 
about i to 44wt% PbO [27].  Microstructural 
characterization indicates that the glasses under 

study can be considered as typical particulate 
composites which are composed of  the two end- 
member phases [25,26,28]. The microstructure 
consists of  PbO-rich spherical particles-BzO3- 

rich matrix for glass compositions on the B2 03-  
rich side o f  the miscibility gap (about  1 to 20 wt% 
PbO) and conversely B203-rich spherical par- 
t ic les-PbO-rich matrix for glass compositions on 
the PbO-rich side of  the gap (about  30 to 44 wt% 

PbO). 
Taking two end-member compositions as 1 wt% 

PbO and 44wt% PbO, respectively, the elastic 
modulus, hardness and flow stress for the end- 
member  phases were estimated. The results are 
shown in Table II. The value for Young's modulus 
and Poisson's ratio were obtained by  interpolation 
o f  the elastic modulus data pun ished  by Shaw 
and Uhlmann [29]. The values for hardness were 
estimated by interpolation of  the experimental 
data listed in Table I. Flow stresses were calculated 
from hardness and Young's modulus values follow- 
ing the theory of  Marsh [9]. 

For  glass compositions on the B203-rich side 
within the miscibility gap, the dispersed second- 
phase has higher elastic modulus and higher flow 
stress. In addition, the glasses in this composit ion 

T A B L E I I Elastic modulus, hardness and flow stress data estimated for the end-member phases which form PbO-B 203 
immiscible glasses 

End-member phase Young's Poisson's Hardness, Flow stress,~ 
modulus*, ratio*, H(GPa) ay (GPa) 
E (GPa) u 

1 wt% PbO glass 17.5 0.26 1.23 0.716 
44 wt % PbO glass 56.5 0.27 3.53 1.92 

*After Shaw and Uhlmann [29]. 
-~Evaluated from the theory of Marsh [9]. 
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Figure 1 Variation of Vickers hardness with volume- 
fraction of dispersed phase for glasses consisting of PbO- 
rich particles-B2 03 -rich matrix. The solid curve rep- 
resents Equation 23. 

range present relatively small volume-fractions of 
dispersed phase. It is then expected that the 
hardness behaviour follows Equation 23 derived 
for a composite consisting of hard particles-soft 
glass matrix. In Fig. 1, the indentation hardness 
observed for glass on the B203-rich side of the 
miscibility gap is plotted against the volume- 
fraction of dispersed PbO-rich phase. The solid 
curve in the figure represents theoretical predic- 
tion established from Equation 23. It is seen from 
Fig. 1 that the experimental data are in fair 
agreement with the theory. 

For glass compositions on the PbO-rich side 
within the miscibility gap, it is expected that the 
presence of the second-phase dispersion causes a 
reduction of the hardness and its behaviour is 
explained following Equation 35. In Fig. 2, the 
experimental hardness data for the glasses under 
consideration are plotted against the volume- 
fraction of dispersed B2Oa-rich phase. The 
theoretical prediction established from Equation 
35 is illustrated by a solid curve. It is found that 
the experimentai hardness varies with volume- 
fraction of dispersed second-phase in accordance 
with the theoretical prediction. 

4.2.  Hardness o f  a phase-separated sod ium 
boros i l i ca te  glass 

Another set of Vickers indentation experiments 
was carried out on a Vycor-type sodium boro- 
silicate glass having the composition 60mo1% 
SiO2 30mol%B203 10mol%Na20.  It has been 
shown that this type of glass consists of two 
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Figure 2 Reduced Vickers hardness for glasses consisting 
of B 2 03 -rich particles-PbO-rich matrix plotted against 
the volume-fraction of dispersed phase. Solid curve 
represents Equation 35. 

principal phases, one rich in silica which seems to 
be perfectly homogeneous and the other rich in 
borate containing a microphase of sodium borate 
[30]. For the glass composition selected for study, 
the microphase rich in silica remains discontinuous 
and forms discrete spherical particles. Prod'homme 
[31] and Cordelier [32] followed, using replication 
electron microscopy, the development of  phase- 
separation morphology of the present glass as a 
function of applied heat-treatment temperature 
and time. 

The glass* was subjected to an isothermal 
heat-treatment for increasing times at 710~ 
corresponding to the optimal opacification tem- 
perature for this glass. Microstructural analysis 
was carried out on each heat-treated sample using 
replication electron micrographs taken by Cordelier 
[32]. The glass specimens about 3 mm thick were 
used for Vickers indentation testing. Hardness 
measurements were carried out using a Vickers 
diamond pyramid with a hardness tester in air at 
room temperature. At least 10 indentations were 
made on each specimen surface with a time of 
10sec at full load of a 100g weight. Table III 
summarizes the results of microstructure charac- 
terization and hardness measurements for glass 
specimens subjected to various heat-treatment 
time s at 710 ~ C. 

*The glass was supplied by the Soci6t6 Sovirel to the Laboratoire des Verres du CNRS, Paris, directed by Dr A. Winter. 
One of the authors (NM) carried out some experimental work on this glass during his stay in the laboratory. 
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T A B L E I I I Vickers hardness for a phase-separated sodium borosilicate glass subjected to an isothermal heat-treatment 
at 710 ~ C for various times 

Heat treatment time Volume-fraction of Particle diameter* 
at 710 ~ C (h) silica-rich phase D (nm) 

Vickers hardness'~ 

H (kgf mm -2 ) H (GPa) 

(As cooled) 486 -+ 17 4.77 -+ 0.17 
1 0.12 100 487 -+ 18 4.78 +- 0.18 
2 0.17 130 505 -+ 25 4.95 +- 0.25 
4 0.21 180 487 +- 19 4.78 -+ 0.19 
8 0.26 220 478 +- 14 4.69 -+ 0.14 

16 0.31 260 476 -+ 24 4.67 -+ 0.24 
32 0.28 330 480 +- 17 4.71 + 0.17 
64 0.29 420 475 -+ 23 4.66 -+ 0.23 

128 0.31 540 476 -+ 20 4.67 -+ 0.20 

*After Cordelier [ 32]. 
tLoad, P = 100g. 

An a t tempt  has been made to interpret  hardness 
data for this glass regarding it as a two-phase 
particulate composite,  consisting o f  silica-rich 
spherical particles in a borate-rich matrix.  However, 
the data must be interpreted semi-quantitatively 
due to a lack o f  detailed knowledge concerning 
consti tuent properties o f  the present phase- 
separated glass. It can be assumed that  this glass 
corresponds to a composite containing a second- 
phase dispersion with a higher elastic limit. As 
silicate glasses containing a large amount  of  
B203 and Na20  generally present lower elastic 
moduli  than glasses highly rich in silica [33], the 
elastic modulus for the continuous matr ix is 
presumed to be lower than that  for the silica-rich 
dispersed phase. I t  is then expected that  the 
hardness behaviour can be explained on the basis 
of  the theoretical analysis given in Section 3.3. 

In Fig. 3, the Vickers hardness, volume-fraction 
of  dispersed silica-rich particles and particle size 
are p lot ted  against the heat- treatment time at 
710~ It  is seen that the average particle size 
varies clearly in proport ion to the cube root  of  
heat- treatment time after 6 h of  t reatment.  Further 
the volume-fraction of  dispersed silica-rich phase is 
found to reach a constant value, 0.30 after 8 h o f  
heat- treatment.  These observations suggest that  
after about 8 h of  heat- treatment,  the composit ion 
o f  the matr ix  remains unaltered and the micro- 
structural modification results entirely from the 
coarsening mechanism of  particles. As indicated 
from Equation 38 or 39, the ratio of  the inter- 
particle spacing to the particle size is constant 
when the volume-fraction of  dispersed phase 
remains unaltered. Therefore, when the coarsening 
mechanism proceeds the inter-particle spacing 

should also vary in proport ion to the particle size. 
It is found that  the hardness remains constant 
after 8 h of  heat-treatment.  This hardness behaviour 
is in accord with the theoretical prediction 
(Equation 23). Thus, the hardness is independent  
of  the particle size and inter-particle spacing as 
long as the volume-fraction of  dispersed phase is 
constant.  

For  the initial stage o f  heat- treatment at 
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Figure 3 Variation of dispersed particle size, D, volume- 
fraction of dispersed particles, ~, and Vickers hardness, 
H, for a sodium borosilicate glass as a function of heat- 
treatment time at 710 ~ C. The particle size data is after 
Cordelier [32]. 
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710~ (up to about 6h), the situation is rather 
complicated. A slight increase in volume-fraction 
of dispersed particles with heat-treatment time at 
this stage leads us to imagine that the coarsening 
may not be a sole phenomenon which occurs in 
the phase-separation process. It seems that the 
ionic diffusion process still occurs to some extent. 
In fact, dielectric measurements carried out on the 
same glass samples suggest a possible variation of 
the chemical composition of the matrix at this 
heat-treatment stage [34]. It can be assumed, 
therefore, that the hardness and elastic modulus of 
the matrix decrease with increasing heat-treatment 
time due to the decrease in silica content of the 
matrix chemcial composition. On one hand, the 
increase in volume-fraction of the hard, silica-rich 
phase may contribute to increasing the hardness of 
the composite. On the other hand, the variation of 
the matrix composition may contribute to decreas- 
ing it. The hardness variation at the initial stage of 
heat-treatment may be then explained as follows: 
up to about 2h of heat-treatment, the hardness 
decrease of the matrix resulting from the variation 
of the chemical composition is presumed to be 
small and the overall hardness increases with 
increasing heat-treatment time owing to the 
increase in volume-fraction of silica-rich phase; 
however, after about 2h, the hardness of the 
matrix may decrease appreciably with heat- 
treatment time and the overall hardness decreases 
despite the small increases in volume-fraction of 
silica-rich phase. 

5. Application of the theory to a glass- 
ceramic 

Tashiro and Sakka [35,36] measured the Vickers 
hardness of  a partially crystallized Li20-SiO2 
glass-ceramic, derived from the glass of compo- 
sition 8 1 w t % S i Q  12.5wt%Li20 2 . 5 w t % K 2 0  
4 w t % A 1 2 0  3 0.03wt%CeO and 0.027wt%Au. 
The base glass specimens were irradiated for 
various times by ultra-violet light. After the u.v. 
exposure, each specimen was subjected to heat- 
treatment at 510~ for 30min and successiveiy at 
620 ~ C for 60 min. The crystal phase was identified 
as lithium metasilicate crystal (Li20"SiO2) by 
X-ray diffraction. It was found, by X-ray analysis 
and density measurements, that the proportion of 
the crystal phase was constant after heat-treatment 
at 620 ~ C for 60 min, regardless of the difference in 
u.v. exposure time. In Table IV, the Vickers 
hardness data are shown along with the crystallite 
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TABLE IV Vickers hardness of a partially crystallized 
Li: O-SiO 2 glass-ceramic* 

U.v. exposure Crystallite Vickers 
time (min) size (nm) hardness, 

H (kgf mm-2 ) 

0 0 560 
2 620 830 

30 340 828 
180 290 845 
600 462 830 

1000 525 830 

*Data from Tashiro and Sakka [35, 36]. 

size determined from electron micrographs. This 
glass-ceramic contains a large proportion of glass 
phase (about 55wt%) and hence is regarded as 
glass matrix composite with a hard particle disper- 
sion. The constancy of the proportion of the 
crystal phase suggests that the composition of the 
glass matrix remains unaltered for all of  the 
specimens subjected to the u.v. exposure. Although 
the crystal shape is not spherical and the concen- 
tration of  crystal phase is relatively large, the 
general hardness behaviour can be appreciated on 
the basis of our theory. The Vickers hardness is 
found to be independent of  the particle size in 
accordance with the theoretical analysis which 
predicts that the hardness of composite remains 
unchanged as long as the volume-fraction of 
second-phase is constant. 

6. Concluding remarks 
The present analysis on the indentation hardness 
of glass matrix, particulate composite is based 
upon the assumption that glass is an elastic-plastic 
solid on a microscopic scale. Although this assump- 
tion is rather phenomenological, the theoretical 
analyses were in good agreement with the exper- 
imental results of the Vickers hardness for phase- 
separated PbO-B203 and Na20-B203-SiO~ 
glasses. The theory could also give a good expla- 
nation of published data for the Vickers hardness 
of a glass-ceramic. However, it should be noted 
that there are some glasses whose deformation 
process is believed to be dominated by the densifi- 
cation mechanism. In this respect, further study 
should be undertaken to analyse the hardness of 
glass matrix composites for possible cases where 
inelastic deformation in the matrix is dominated 
by densification and to examine the degree to 
which the overall hardness behaviour of the 
composite reflects the deformation mechanism 
in the matrix. 
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